Fluorescence optical diffusion tomography.
نویسندگان
چکیده
A nonlinear, Bayesian optimization scheme is presented for reconstructing fluorescent yield and lifetime, the absorption coefficient, and the diffusion coefficient in turbid media, such as biological tissue. The method utilizes measurements at both the excitation and the emission wavelengths to reconstruct all unknown parameters. The effectiveness of the reconstruction algorithm is demonstrated by simulation and by application to experimental data from a tissue phantom containing the fluorescent agent Indocyanine Green.
منابع مشابه
Quantitative fluorescence diffuse optical tomography in the presence of heterogeneities.
In fluorescence diffuse optical tomography (fDOT), the accuracy of reconstructed fluorescence distributions highly depends on the knowledge of the tissue optical heterogeneities for correct modeling of light propagation. Common approaches are to assume homogeneous optical properties or, when structural information is available, assign optical properties to various segmented organs, which is lik...
متن کاملFluorescence-enhanced optical tomography in small volume: Telegrapher and Diffusion models
Small animal fluorescence-enhanced optical tomography has possibility for restructuring drug discovery and preclinical investigation of drug candidates. However, accurate modeling of photon propagation in small animals is critical to quantitatively obtain accurate tomographic images. The diffusion approximation is commonly used for biomedical optical diagnostic techniques in turbid large media ...
متن کاملFluorescence optical diffusion tomography using multiple-frequency data.
A method is presented for fluorescence optical diffusion tomography in turbid media using multiple-frequency data. The method uses a frequency-domain diffusion equation model to reconstruct the fluorescent yield and lifetime by means of a Bayesian framework and an efficient, nonlinear optimizer. The method is demonstrated by using simulations and laboratory experiments to show that reconstructi...
متن کاملEstimation of kinetic model parameters in fluorescence optical diffusion tomography.
We present a technique for reconstructing the spatially dependent dynamics of a fluorescent contrast agent in turbid media. The dynamic behavior is described by linear and nonlinear parameters of a compartmental model or some other model with a deterministic functional form. The method extends our previous work in fluorescence optical diffusion tomography by parametrically reconstructing the ti...
متن کاملReconstruction of an optical inhomogeneity map improves fluorescence diffuse optical tomography
We propose a new reconstruction algorithm for fluorescence diffuse optical tomography, which is designed for highly heterogeneous objects, such as biological tissues. It is a two-step algorithm that exploits continuous-wave measurements acquired at both excitation and fluorescence wavelengths. First, an optical inhomogeneity map, which depends on both absorption and diffusion coefficients, is o...
متن کاملPatch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography--part 1: technical principles.
Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 42 16 شماره
صفحات -
تاریخ انتشار 2003